Update README to reflect new project structure and features

- Revamped project description to highlight the integration of Flutter frontend, Python FastAPI backend, and AI-powered image classification.
- Added detailed sections on system architecture, quick start guide, API endpoints, and features overview.
- Enhanced troubleshooting and performance considerations for both frontend and backend.
- Included future enhancements and acknowledgments for technologies used in the project.
This commit is contained in:
2025-09-26 19:31:24 +08:00
parent 5a311d7ad0
commit 11ea469b6d

446
README.md
View File

@@ -1,113 +1,375 @@
# FixMate — Flutter app + React dashboard (Codespaces-friendly)
# 🏗️ FixMate - Smart Citizen-Driven Urban Maintenance Platform
FixMate is a lightweight, demo-friendly citizen maintenance reporter. It lets you quickly capture issues, geotag them, and visualize reports on a simple dashboard. Theres no backend; everything runs locally or in the browser — perfect for hackathons, prototypes, and GitHub Codespaces.
FixMate is a comprehensive citizen reporting application that combines **Flutter frontend** with **Python FastAPI backend** and **AI-powered image classification**. Users can capture urban issues (potholes, broken streetlights, trash, etc.), get automatic AI classification, and track their reports through a complete management system.
## Why this repo exists
- Zero-backend demo: data lives on-device (or in demo JSON for the dashboard).
- Deterministic "mock AI" categorization so UX flows are predictable.
- Fast setup in Codespaces or locally with minimal dependencies.
## 🎯 System Architecture
## Quick start in GitHub Codespaces
### Frontend (Flutter)
- **Location**: Root directory
- **Technology**: Flutter (Dart) with Material Design
- **Purpose**: Cross-platform mobile and web interface for citizens
- **Features**: Camera integration, GPS location, map visualization, bilingual support (EN/BM)
You can run both the Flutter app (as a web app) and the static React dashboard entirely inside a Codespace. No emulators required.
### Backend (Python FastAPI)
- **Location**: `backend/` directory
- **Technology**: Python FastAPI with SQLAlchemy + SQLite
- **Purpose**: RESTful API server with AI-powered image classification
- **Features**: YOLO-based object detection, severity classification, ticket management
### 1) Flutter Web (recommended in Codespaces)
- Prerequisites: Flutter SDK is available in your Codespace. If not, install it or use a devcontainer with Flutter preinstalled. Then enable web:
- flutter config --enable-web
- Install dependencies:
- flutter pub get
- Run a local web server (Codespaces will auto-forward the port):
- flutter run -d web-server --web-port 3000
- Open the forwarded port from the Codespaces ports panel. Camera and geolocation typically work over the Codespaces HTTPS tunneled URL.
### Data Flow
```
User takes photo → Flutter App → FastAPI Backend → AI Analysis → Database
↓ ↓ ↓ ↓ ↓
Reports List ←────── API Calls ←─── HTTP/REST ──→ YOLO Model ─→ SQLite
```
Notes:
- Geolocation/camera require HTTPS in many browsers; Codespaces forwarded URLs are HTTPS, which helps.
- On web, images are stored as base64; on mobile, images are saved to app storage and paths persist (see [lib/services/storage.dart](lib/services/storage.dart:1)).
- Entry point for the app is [main()](lib/main.dart:8), which wires up i18n and the locale provider and launches [FixMateApp](lib/app.dart:12).
## 🚀 Quick Start Guide
### 2) React dashboard (static site)
- Serve inside Codespaces (Python simple HTTP server):
- cd dashboard && python -m http.server 8000
- Open the forwarded port and view your dashboard.
### Prerequisites
- **Flutter SDK** 3.8.1+ ([Install Guide](https://docs.flutter.dev/get-started/install))
- **Python** 3.11+ ([Install Guide](https://python.org/downloads/))
- **Git** for version control
Behavior:
- Language toggle persists in localStorage.
- Filters drive a clustered Leaflet map, queue, drawer, stats, and optional heatmap overlay.
### 1. Clone and Setup
```bash
git clone <your-repo-url>
cd fixmate-frontend
```
## Running locally (outside Codespaces)
### 2. Install Flutter Dependencies
```bash
flutter pub get
```
### Flutter
- Install Flutter (stable) and run:
- flutter pub get
- flutter run (or flutter run -d chrome)
- Android/iOS will prompt for camera and location permissions. On web, geolocation/camera require HTTPS; some browsers restrict camera on http.
- App root: [FixMateApp](lib/app.dart:12). Bottom tabs and routing live in [MainScreen](lib/app.dart:36) and the onboarding/start logic lives in [StartRouter](lib/app.dart:114).
### 3. Setup Backend
```bash
cd backend
pip install -r requirements.txt
```
### Dashboard
- Serve the dashboard folder over HTTP:
- cd dashboard && python -m http.server 8000
- Open http://127.0.0.1:8000 (or your dev server URL).
### 4. Start Backend Server (Terminal 1)
```bash
cd backend
python main.py
```
✅ Backend will run on: `http://127.0.0.1:8000`
## Features implemented
- Flutter app tabs: Report, Map, My Reports, Settings (bilingual EN/BM)
- Capture flow: camera/gallery, GPS, deterministic mock AI, local storage
- Map: OpenStreetMap via flutter_map with clustering, filters, marker details, legend, external maps link
- My Reports: list/detail with status cycle and delete
- Settings: language toggle and clear data
- React dashboard: filters, clustered map, queue, drawer, stats, heatmap toggle
### 5. Start Flutter App (Terminal 2)
```bash
# Navigate back to project root
cd ..
## Project structure
- Key Flutter files:
- [lib/app.dart](lib/app.dart:1)
- [lib/main.dart](lib/main.dart:1)
- [lib/screens/report_flow/capture_screen.dart](lib/screens/report_flow/capture_screen.dart:1)
- [lib/screens/map/map_screen.dart](lib/screens/map/map_screen.dart:1)
- [lib/screens/my_reports/my_reports_screen.dart](lib/screens/my_reports/my_reports_screen.dart:1)
- [lib/screens/settings/settings_screen.dart](lib/screens/settings/settings_screen.dart:1)
- [lib/services/storage.dart](lib/services/storage.dart:1), [lib/services/mock_ai.dart](lib/services/mock_ai.dart:1), [lib/services/location_service.dart](lib/services/location_service.dart:1)
- [lib/models/report.dart](lib/models/report.dart:1), [lib/models/enums.dart](lib/models/enums.dart:1)
- [assets/lang/en.json](assets/lang/en.json:1), [assets/lang/ms.json](assets/lang/ms.json:1)
# Start Flutter app (choose your target)
flutter run # Mobile (Android/iOS)
# OR
flutter run -d chrome # Web (Chrome)
# OR
flutter run -d web-server # Web Server
```
- Dashboard files:
- [dashboard/index.html](dashboard/index.html:1), [dashboard/app.js](dashboard/app.js:1), [dashboard/styles.css](dashboard/styles.css:1)
- [dashboard/i18n/en.json](dashboard/i18n/en.json:1), [dashboard/i18n/ms.json](dashboard/i18n/ms.json:1)
- [dashboard/data/demo-reports.json](dashboard/data/demo-reports.json:1)
## 🔧 Alternative Startup Methods
## Tech stack
- Flutter packages: flutter_map, flutter_map_marker_cluster, latlong2, geolocator, image_picker, path_provider, shared_preferences, uuid, url_launcher, provider (see [pubspec.yaml](pubspec.yaml:31))
- Dashboard: React 18 UMD, Leaflet + markercluster (+ optional heat), Day.js
### Method A: Backend Only
```bash
cd backend
python main.py
```
## Developer notes (for quick orientation)
- App entry: [main()](lib/main.dart:8) initializes locale/i18n and launches [FixMateApp](lib/app.dart:12).
- Tab nav and screens: [MainScreen](lib/app.dart:36) displays tabs for:
- Report: [CaptureScreen](lib/screens/report_flow/capture_screen.dart:1)
- Map: [MapScreen](lib/screens/map/map_screen.dart:1)
- My Reports: [MyReportsScreen](lib/screens/my_reports/my_reports_screen.dart:1)
- Settings: [SettingsScreen](lib/screens/settings/settings_screen.dart:1)
- Onboarding + welcome handoff: [StartRouter](lib/app.dart:114) decides whether to show onboarding or the main app.
- Themes live in [lib/theme/themes.dart](lib/theme/themes.dart:1), translations in [assets/lang/en.json](assets/lang/en.json:1) and [assets/lang/ms.json](assets/lang/ms.json:1).
### Method B: Using Uvicorn (Alternative)
```bash
cd backend
uvicorn main:app --host 127.0.0.1 --port 8000 --reload
```
## Known limitations
- No backend; all data is local or demo JSON.
- "AI" is simulated; severity/category are heuristic and not model-driven.
- Dashboard UI state is not persisted; a refresh resets filters and selections.
- OpenStreetMap tile usage is subject to their terms and rate limits.
- Mobile-only features (camera with native picker, GPS background behavior) wont fully work in Codespaces; use Flutter Web inside Codespaces for best results.
### Method C: Flutter Web (Web Version)
```bash
flutter run -d chrome # or firefox, edge
```
## Visual tokens
- Severity colors: High #D32F2F, Medium #F57C00, Low #388E3C
- Status colors: Submitted #1976D2, In Progress #7B1FA2, Fixed #455A64
### Method D: Development Mode (Hot Reload)
```bash
# Terminal 1 - Backend with auto-reload
cd backend
uvicorn main:app --reload
## Troubleshooting
- Browser blocks camera/geolocation on non-HTTPS:
- Use Codespaces forwarded HTTPS URL or run locally over HTTPS.
- Flutter web server port not visible:
- Check Codespaces “Ports” tab, ensure the port is “Public”.
- Slow map tile loads:
- You may be rate-limited or on a constrained network; reduce panning/zoom or cache during demos.
# Terminal 2 - Flutter with hot reload
flutter run
```
## License
- Placeholder: add a LICENSE file or specify licensing before distribution.
## 📱 API Endpoints
## Acknowledgements
- OpenStreetMap, Leaflet, flutter_map and community plugins, React, Day.js, Flutter community.
The Flutter app communicates with these backend endpoints:
| Endpoint | Method | Purpose |
|----------|--------|---------|
| `/api/tickets` | GET | Fetch all reports |
| `/api/report` | POST | Submit new report with image |
| `/api/tickets/{id}` | GET | Get specific report |
| `/api/tickets/{id}` | PATCH | Update report status |
| `/api/analytics` | GET | Get dashboard analytics |
| `/api/users` | POST | Create user account |
### API Documentation
View interactive API documentation at: `http://127.0.0.1:8000/docs`
---
## 🎮 Features Overview
### Flutter Frontend Features
-**Report Flow**: Camera/gallery photo capture with GPS location
-**AI Classification**: Automatic issue type and severity detection
-**Map View**: Interactive OpenStreetMap with clustering and filtering
-**Report Management**: View, edit, and track report status
-**Bilingual Support**: English and Bahasa Malaysia
-**Settings**: Language toggle and data management
### Backend AI Features
-**YOLO Object Detection**: Detects urban issues from images
-**Severity Classification**: ML model assesses issue severity
-**SQLite Database**: Local data storage with full CRUD operations
-**RESTful API**: Complete API for mobile app integration
-**File Upload**: Image storage and processing
## 📁 Project Structure
### Frontend (Flutter)
```
lib/
├── app.dart # Main app widget and routing
├── main.dart # App entry point
├── models/
│ ├── report.dart # Report data model
│ └── enums.dart # Category, severity, status enums
├── screens/
│ ├── report_flow/ # Photo capture flow
│ ├── map/ # Map visualization screen
│ ├── my_reports/ # User reports management
│ └── settings/ # App settings
├── services/
│ ├── api_service.dart # Backend API communication
│ ├── storage.dart # Local data storage
│ ├── location_service.dart # GPS location services
│ └── mock_ai.dart # AI classification logic
├── theme/
│ └── themes.dart # App theming
├── widgets/ # Reusable UI components
└── l10n/ # Internationalization
```
### Backend (Python)
```
backend/
├── main.py # FastAPI server entry point
├── requirements.txt # Python dependencies
├── app/
│ ├── database.py # SQLite database setup
│ ├── models/ # Database models
│ ├── routes/ # API route handlers
│ ├── services/ # Business logic and AI services
│ ├── schemas/ # Pydantic data models
│ └── static/uploads/ # Image storage
└── test/ # Test files and utilities
```
## 🛠️ Technology Stack
### Frontend Technology Stack
- **Flutter**: 3.8.1+ with Material Design
- **Key Packages**:
- `flutter_map` + `flutter_map_marker_cluster` (Interactive maps)
- `geolocator` (GPS location services)
- `image_picker` (Camera integration)
- `http` (API communication)
- `provider` (State management)
- `shared_preferences` (Local storage)
### Backend Technology Stack
- **FastAPI**: 0.117.1+ (Modern Python web framework)
- **SQLAlchemy**: 2.0.43+ (ORM for database operations)
- **PyTorch**: 2.8.0+ (Machine learning framework)
- **Ultralytics YOLO**: 8.3.203+ (Object detection)
- **SQLite**: Local database for data persistence
### AI Models
- **Object Detection**: YOLOv12n for issue identification
- **Severity Classification**: Custom PyTorch model
- **Model Storage**: `backend/app/models/` directory
## 🛠️ Troubleshooting
### Backend Issues
**Port 8000 already in use:**
```bash
# Windows
netstat -ano | findstr :8000
taskkill /F /IM python.exe
# Alternative: Kill specific process
Get-Process -Name python | Stop-Process -Force
```
**Missing dependencies:**
```bash
cd backend
pip install -r requirements.txt
pip install python-multipart pydantic[email]
```
**Backend not starting:**
```bash
# Test if modules can be imported
cd backend
python -c "import main; print('Import successful')"
```
### Frontend Issues
**Flutter dependencies:**
```bash
flutter clean
flutter pub get
```
**Device connection issues:**
```bash
flutter devices # List connected devices
flutter doctor # Check Flutter installation
```
**Web-specific issues:**
```bash
flutter config --enable-web
```
### Common Issues
**"Connection refused" errors:**
- Ensure backend server is running on port 8000
- Check firewall settings
- Verify API base URL in `lib/services/api_service.dart`
**Camera/Geolocation not working:**
- Grant permissions in device settings
- Use HTTPS for web deployment
- Check browser permissions
**Slow AI processing:**
- First startup downloads ML models (may take time)
- Consider using CPU-only builds for faster startup
- Check available memory
## 🧪 Testing & Development
### Backend Testing
```bash
cd backend
python -m pytest test/ # Run all tests
python test/check_torch.py # Verify PyTorch setup
```
### Flutter Testing
```bash
flutter test # Run unit tests
flutter test --coverage # With coverage report
```
### Database Management
```bash
cd backend
python -c "from app.database import engine; print('Database file:', engine.url.database)"
# Database file: backend/app/db/fixmate.db
```
## 📊 Performance Considerations
### Backend Performance
- **First Startup**: ML models download (~200MB) - may take several minutes
- **Memory Usage**: PyTorch models require significant RAM
- **CPU vs GPU**: CPU-only builds available for compatibility
- **Database**: SQLite suitable for small-scale deployments
### Frontend Performance
- **Image Processing**: Images compressed before upload
- **Map Rendering**: Clustering optimizes marker display
- **Caching**: Local storage for offline functionality
## 🚀 Production Deployment
### Backend Deployment
```bash
cd backend
# Production server
uvicorn main:app --host 0.0.0.0 --port 8000 --workers 4
# Or with Gunicorn
gunicorn main:app -w 4 -k uvicorn.workers.UvicornWorker
```
### Flutter Deployment
```bash
# Build for production
flutter build apk --release # Android
flutter build ios --release # iOS
flutter build web --release # Web
# Build for specific targets
flutter build appbundle # Android App Bundle
flutter build ipa # iOS Archive
```
## 📚 Key Files Reference
### Essential Flutter Files
- `lib/main.dart` - App entry point
- `lib/app.dart` - Main app widget and navigation
- `lib/services/api_service.dart` - Backend communication
- `lib/models/report.dart` - Data models
- `pubspec.yaml` - Flutter dependencies
### Essential Backend Files
- `backend/main.py` - FastAPI server
- `backend/app/database.py` - Database configuration
- `backend/app/routes/tickets.py` - Ticket API endpoints
- `backend/app/services/ai_service.py` - AI classification logic
- `backend/requirements.txt` - Python dependencies
## 🎯 Future Enhancements
### Planned Features
- [ ] Real-time notifications for status updates
- [ ] Advanced filtering and search capabilities
- [ ] User authentication and profiles
- [ ] Admin dashboard for report management
- [ ] Push notifications for mobile
- [ ] Offline mode with sync capabilities
- [ ] Multi-language support expansion
- [ ] Analytics and reporting dashboard
### Technical Improvements
- [ ] Database optimization for large datasets
- [ ] Caching layer implementation
- [ ] API rate limiting
- [ ] Image compression optimization
- [ ] Background processing for AI tasks
- [ ] Monitoring and logging enhancement
## 📄 License & Acknowledgments
### License
- Placeholder: Add appropriate license for your project
### Acknowledgments
- **OpenStreetMap** - Map data and tile services
- **Leaflet** - Interactive mapping library
- **Flutter Community** - Dart packages and plugins
- **Ultralytics** - YOLO implementation
- **PyTorch** - Machine learning framework
- **FastAPI** - Modern Python web framework
### References
1. [Flutter Documentation](https://docs.flutter.dev/)
2. [FastAPI Documentation](https://fastapi.tiangolo.com/)
3. [YOLOv12 Implementation](https://github.com/ultralytics/ultralytics)
4. [PyTorch Models](https://pytorch.org/)