feat: introduce FixMate Flutter app and React dashboard
- Add Flutter app shell (FixMateApp/MainScreen) with tabs: Report, Map, My Reports, Settings - Implement capture and review flow (image_picker, geolocator, deterministic mock AI), and local storage (SharedPreferences + photo files on mobile) - Build Map screen with flutter_map, marker clustering, filters, legend, marker details, and external maps deeplink - Add My Reports list (view details, cycle status, delete) and Settings (language toggle via Provider, diagnostics, clear all data) - Introduce JSON i18n loader and LocaleProvider; add EN/BM assets - Define models (Report, enums) and UI badges (severity, status) - Add static React dashboard (Leaflet map with clustering, heatmap toggle, filters incl. date range, queue, detail drawer), i18n (EN/BM), and demo data - Update build/config and platform setup: - Extend pubspec with required packages and register i18n assets - Android: add CAMERA and location permissions; pin NDK version - iOS: add usage descriptions for camera, photo library, location - Gradle properties tuned for Windows/UNC stability - Register desktop plugins (Linux/macOS/Windows) - .gitignore: ignore .kilocode - Overhaul README and replace sample widget test
This commit is contained in:
116
lib/services/mock_ai.dart
Normal file
116
lib/services/mock_ai.dart
Normal file
@@ -0,0 +1,116 @@
|
||||
import 'dart:math';
|
||||
import 'package:flutter/foundation.dart' hide Category;
|
||||
import '../models/enums.dart';
|
||||
import '../models/report.dart';
|
||||
|
||||
/// Service for generating deterministic AI suggestions for reports
|
||||
class MockAIService {
|
||||
/// Generate a deterministic seed based on report parameters
|
||||
static int _generateSeed(String id, String createdAt, double lat, double lng, int? photoSizeBytes) {
|
||||
final combined = '$id$createdAt$lat$lng${photoSizeBytes ?? 0}';
|
||||
var hash = 0;
|
||||
for (var i = 0; i < combined.length; i++) {
|
||||
hash = ((hash << 5) - hash) + combined.codeUnitAt(i);
|
||||
hash = hash & hash; // Convert to 32-bit integer
|
||||
}
|
||||
return hash.abs();
|
||||
}
|
||||
|
||||
/// Generate AI suggestion for a report
|
||||
static AISuggestion generateSuggestion({
|
||||
required String id,
|
||||
required String createdAt,
|
||||
required double lat,
|
||||
required double lng,
|
||||
int? photoSizeBytes,
|
||||
}) {
|
||||
final seed = _generateSeed(id, createdAt, lat, lng, photoSizeBytes);
|
||||
final random = Random(seed);
|
||||
|
||||
// Category selection with weighted probabilities
|
||||
final categoryWeights = {
|
||||
Category.pothole: 0.35,
|
||||
Category.trash: 0.25,
|
||||
Category.streetlight: 0.15,
|
||||
Category.signage: 0.10,
|
||||
Category.drainage: 0.10,
|
||||
Category.other: 0.05,
|
||||
};
|
||||
|
||||
// Apply heuristics based on image dimensions (if available)
|
||||
final aspectRatio = photoSizeBytes != null ? (random.nextDouble() * 2) : 1.0;
|
||||
if (aspectRatio > 1.2) {
|
||||
// Wide image - likely signage
|
||||
categoryWeights[Category.signage] = categoryWeights[Category.signage]! * 2;
|
||||
categoryWeights[Category.pothole] = categoryWeights[Category.pothole]! * 0.5;
|
||||
}
|
||||
|
||||
// Select category based on weights
|
||||
final categoryRand = random.nextDouble();
|
||||
double cumulative = 0.0;
|
||||
Category selectedCategory = Category.pothole;
|
||||
|
||||
for (final entry in categoryWeights.entries) {
|
||||
cumulative += entry.value;
|
||||
if (categoryRand <= cumulative) {
|
||||
selectedCategory = entry.key;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Severity selection with weighted probabilities
|
||||
final severityWeights = {
|
||||
Severity.medium: 0.45,
|
||||
Severity.high: 0.30,
|
||||
Severity.low: 0.25,
|
||||
};
|
||||
|
||||
// Apply location accuracy heuristic
|
||||
final accuracy = random.nextDouble() * 50; // Simulate accuracy 0-50m
|
||||
final isNight = random.nextBool(); // Simulate night time
|
||||
|
||||
if (accuracy <= 10 && isNight) {
|
||||
// High accuracy at night - bump high severity
|
||||
severityWeights[Severity.high] = severityWeights[Severity.high]! * 1.5;
|
||||
severityWeights[Severity.medium] = severityWeights[Severity.medium]! * 0.8;
|
||||
}
|
||||
|
||||
// Select severity based on weights
|
||||
final severityRand = random.nextDouble();
|
||||
cumulative = 0.0;
|
||||
Severity selectedSeverity = Severity.medium;
|
||||
|
||||
for (final entry in severityWeights.entries) {
|
||||
cumulative += entry.value;
|
||||
if (severityRand <= cumulative) {
|
||||
selectedSeverity = entry.key;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Generate confidence score (0.6 - 0.9)
|
||||
final confidence = 0.6 + (random.nextDouble() * 0.3);
|
||||
|
||||
return AISuggestion(
|
||||
category: selectedCategory,
|
||||
severity: selectedSeverity,
|
||||
confidence: confidence,
|
||||
);
|
||||
}
|
||||
|
||||
/// Check if the AI suggestion is reliable enough to use
|
||||
static bool isSuggestionReliable(AISuggestion suggestion) {
|
||||
return suggestion.confidence >= 0.7;
|
||||
}
|
||||
|
||||
/// Get confidence level description
|
||||
static String getConfidenceDescription(double confidence) {
|
||||
if (confidence >= 0.8) {
|
||||
return 'High confidence';
|
||||
} else if (confidence >= 0.7) {
|
||||
return 'Medium confidence';
|
||||
} else {
|
||||
return 'Low confidence';
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user