import 'dart:math'; import 'package:flutter/foundation.dart' hide Category; import '../models/enums.dart'; import '../models/report.dart'; /// Service for generating deterministic AI suggestions for reports class MockAIService { /// Generate a deterministic seed based on report parameters static int _generateSeed(String id, String createdAt, double lat, double lng, int? photoSizeBytes) { final combined = '$id$createdAt$lat$lng${photoSizeBytes ?? 0}'; var hash = 0; for (var i = 0; i < combined.length; i++) { hash = ((hash << 5) - hash) + combined.codeUnitAt(i); hash = hash & hash; // Convert to 32-bit integer } return hash.abs(); } /// Generate AI suggestion for a report static AISuggestion generateSuggestion({ required String id, required String createdAt, required double lat, required double lng, int? photoSizeBytes, }) { final seed = _generateSeed(id, createdAt, lat, lng, photoSizeBytes); final random = Random(seed); // Category selection with weighted probabilities final categoryWeights = { Category.pothole: 0.35, Category.trash: 0.25, Category.streetlight: 0.15, Category.signage: 0.10, Category.drainage: 0.10, Category.other: 0.05, }; // Apply heuristics based on image dimensions (if available) final aspectRatio = photoSizeBytes != null ? (random.nextDouble() * 2) : 1.0; if (aspectRatio > 1.2) { // Wide image - likely signage categoryWeights[Category.signage] = categoryWeights[Category.signage]! * 2; categoryWeights[Category.pothole] = categoryWeights[Category.pothole]! * 0.5; } // Select category based on weights final categoryRand = random.nextDouble(); double cumulative = 0.0; Category selectedCategory = Category.pothole; for (final entry in categoryWeights.entries) { cumulative += entry.value; if (categoryRand <= cumulative) { selectedCategory = entry.key; break; } } // Severity selection with weighted probabilities final severityWeights = { Severity.medium: 0.45, Severity.high: 0.30, Severity.low: 0.25, }; // Apply location accuracy heuristic final accuracy = random.nextDouble() * 50; // Simulate accuracy 0-50m final isNight = random.nextBool(); // Simulate night time if (accuracy <= 10 && isNight) { // High accuracy at night - bump high severity severityWeights[Severity.high] = severityWeights[Severity.high]! * 1.5; severityWeights[Severity.medium] = severityWeights[Severity.medium]! * 0.8; } // Select severity based on weights final severityRand = random.nextDouble(); cumulative = 0.0; Severity selectedSeverity = Severity.medium; for (final entry in severityWeights.entries) { cumulative += entry.value; if (severityRand <= cumulative) { selectedSeverity = entry.key; break; } } // Generate confidence score (0.6 - 0.9) final confidence = 0.6 + (random.nextDouble() * 0.3); return AISuggestion( category: selectedCategory, severity: selectedSeverity, confidence: confidence, ); } /// Check if the AI suggestion is reliable enough to use static bool isSuggestionReliable(AISuggestion suggestion) { return suggestion.confidence >= 0.7; } /// Get confidence level description static String getConfidenceDescription(double confidence) { if (confidence >= 0.8) { return 'High confidence'; } else if (confidence >= 0.7) { return 'Medium confidence'; } else { return 'Low confidence'; } } }