Files
citypulse/backend/app/routes/analytics.py
Cursor Agent 46dea3304f Refactor: Integrate backend API and normalize data
This commit integrates the backend API for fetching and updating report data. It also includes a normalization function to handle data consistency between the API and local storage.

Co-authored-by: anthonymuncher <anthonymuncher@gmail.com>
2025-09-26 10:27:39 +00:00

65 lines
2.0 KiB
Python

# app/routes/analytics.py
from fastapi import APIRouter, Depends
from sqlalchemy.orm import Session
from sqlalchemy import func
from app.database import get_db
from app.models.ticket_model import Ticket, SeverityLevel, TicketStatus
from typing import Dict, Any
router = APIRouter()
# ----------------------
# GET /analytics
# ----------------------
@router.get("/analytics", response_model=Dict[str, Any])
def analytics(db: Session = Depends(get_db), cluster_size: float = 0.01):
"""
Returns summary statistics for tickets:
- Total tickets
- Counts by category
- Counts by severity
- Counts by status
- Optional: location clustering (hotspots) using grid-based approach
"""
# Total tickets
total_tickets = db.query(func.count(Ticket.id)).scalar()
# Counts by category
category_counts = dict(
db.query(Ticket.category, func.count(Ticket.id))
.group_by(Ticket.category)
.all()
)
# Counts by severity
severity_counts = dict(
db.query(Ticket.severity, func.count(Ticket.id))
.group_by(Ticket.severity)
.all()
)
# Counts by status
status_counts = dict(
db.query(Ticket.status, func.count(Ticket.id))
.group_by(Ticket.status)
.all()
)
# ----------------------
# Location Clustering
# ----------------------
# Simple grid-based clustering: round lat/lon to nearest cluster_size
tickets = db.query(Ticket.latitude, Ticket.longitude).all()
location_clusters: Dict[str, int] = {}
for lat, lon in tickets:
key = f"{round(lat/cluster_size)*cluster_size:.4f},{round(lon/cluster_size)*cluster_size:.4f}"
location_clusters[key] = location_clusters.get(key, 0) + 1
return {
"total_tickets": total_tickets,
"category_counts": category_counts,
"severity_counts": {k.value: v for k, v in severity_counts.items()},
"status_counts": {k.value: v for k, v in status_counts.items()},
"location_clusters": location_clusters # format: "lat,lon": count
}