Files
citypulse/backend/app/routes/report.py
Cursor Agent 46dea3304f Refactor: Integrate backend API and normalize data
This commit integrates the backend API for fetching and updating report data. It also includes a normalization function to handle data consistency between the API and local storage.

Co-authored-by: anthonymuncher <anthonymuncher@gmail.com>
2025-09-26 10:27:39 +00:00

101 lines
3.4 KiB
Python

from fastapi import APIRouter, UploadFile, File, Form, Depends, HTTPException
from fastapi.responses import JSONResponse
from sqlalchemy.orm import Session
from app.database import get_db
from app.services.ticket_service import TicketService, SeverityLevel
from app.models.ticket_model import User
from app.services.global_ai import get_ai_service
import os, uuid, logging
router = APIRouter()
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
UPLOAD_DIR = "app/static/uploads"
os.makedirs(UPLOAD_DIR, exist_ok=True)
@router.post("/report")
async def report_issue(
user_id: str = Form(...),
latitude: float = Form(...),
longitude: float = Form(...),
description: str = Form(""),
image: UploadFile = File(...),
db: Session = Depends(get_db)
):
logger.debug("Received report request")
ticket_service = TicketService(db)
# Validate user
user = db.query(User).filter(User.id == user_id).first()
if not user:
logger.error(f"User with id {user_id} not found")
raise HTTPException(status_code=404, detail=f"User with id {user_id} not found")
logger.debug(f"User found: {user.name} ({user.email})")
# Save uploaded image
file_ext = os.path.splitext(image.filename)[1]
filename = f"{uuid.uuid4()}{file_ext}"
file_path = os.path.join(UPLOAD_DIR, filename)
try:
content = await image.read()
with open(file_path, "wb") as f:
f.write(content)
logger.debug(f"Saved image to {file_path} ({len(content)} bytes)")
except Exception as e:
logger.exception("Failed to save uploaded image")
raise HTTPException(status_code=500, detail="Failed to save uploaded image")
# Get initialized AI service
ai_service = get_ai_service()
logger.debug("AI service ready")
# Run AI predictions
try:
category = ai_service.classify_category(file_path)
logger.debug(f"Classification: {category}")
if category.lower() == "pothole":
severity_str, annotated_path = ai_service.detect_pothole_severity(file_path)
logger.debug(f"Detection: severity={severity_str}, path={annotated_path}")
severity = {
"High": SeverityLevel.HIGH,
"Medium": SeverityLevel.MEDIUM,
"Low": SeverityLevel.LOW,
"Unknown": SeverityLevel.NA
}.get(severity_str, SeverityLevel.NA)
else:
severity = SeverityLevel.NA
logger.debug("No detection needed")
except Exception as e:
logger.exception("AI prediction failed")
category = "Unknown"
severity = SeverityLevel.NA
# Create ticket
ticket = ticket_service.create_ticket(
user_id=user.id,
image_path=file_path,
category=category,
severity=severity,
latitude=latitude,
longitude=longitude,
description=description
)
logger.info(f"Ticket created: {ticket.id} for user {user.id}")
response = {
"ticket_id": ticket.id,
"user_id": user.id,
"user_name": user.name,
"user_email": user.email,
"category": ticket.category,
"severity": ticket.severity.value,
"status": ticket.status.value,
"description": ticket.description,
"image_path": ticket.image_path
}
logger.debug(f"Response: {response}")
return JSONResponse(status_code=201, content=response)