Refactor: Integrate backend API and normalize data
This commit integrates the backend API for fetching and updating report data. It also includes a normalization function to handle data consistency between the API and local storage. Co-authored-by: anthonymuncher <anthonymuncher@gmail.com>
This commit is contained in:
64
backend/app/routes/analytics.py
Normal file
64
backend/app/routes/analytics.py
Normal file
@@ -0,0 +1,64 @@
|
||||
# app/routes/analytics.py
|
||||
from fastapi import APIRouter, Depends
|
||||
from sqlalchemy.orm import Session
|
||||
from sqlalchemy import func
|
||||
from app.database import get_db
|
||||
from app.models.ticket_model import Ticket, SeverityLevel, TicketStatus
|
||||
from typing import Dict, Any
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
# ----------------------
|
||||
# GET /analytics
|
||||
# ----------------------
|
||||
@router.get("/analytics", response_model=Dict[str, Any])
|
||||
def analytics(db: Session = Depends(get_db), cluster_size: float = 0.01):
|
||||
"""
|
||||
Returns summary statistics for tickets:
|
||||
- Total tickets
|
||||
- Counts by category
|
||||
- Counts by severity
|
||||
- Counts by status
|
||||
- Optional: location clustering (hotspots) using grid-based approach
|
||||
"""
|
||||
# Total tickets
|
||||
total_tickets = db.query(func.count(Ticket.id)).scalar()
|
||||
|
||||
# Counts by category
|
||||
category_counts = dict(
|
||||
db.query(Ticket.category, func.count(Ticket.id))
|
||||
.group_by(Ticket.category)
|
||||
.all()
|
||||
)
|
||||
|
||||
# Counts by severity
|
||||
severity_counts = dict(
|
||||
db.query(Ticket.severity, func.count(Ticket.id))
|
||||
.group_by(Ticket.severity)
|
||||
.all()
|
||||
)
|
||||
|
||||
# Counts by status
|
||||
status_counts = dict(
|
||||
db.query(Ticket.status, func.count(Ticket.id))
|
||||
.group_by(Ticket.status)
|
||||
.all()
|
||||
)
|
||||
|
||||
# ----------------------
|
||||
# Location Clustering
|
||||
# ----------------------
|
||||
# Simple grid-based clustering: round lat/lon to nearest cluster_size
|
||||
tickets = db.query(Ticket.latitude, Ticket.longitude).all()
|
||||
location_clusters: Dict[str, int] = {}
|
||||
for lat, lon in tickets:
|
||||
key = f"{round(lat/cluster_size)*cluster_size:.4f},{round(lon/cluster_size)*cluster_size:.4f}"
|
||||
location_clusters[key] = location_clusters.get(key, 0) + 1
|
||||
|
||||
return {
|
||||
"total_tickets": total_tickets,
|
||||
"category_counts": category_counts,
|
||||
"severity_counts": {k.value: v for k, v in severity_counts.items()},
|
||||
"status_counts": {k.value: v for k, v in status_counts.items()},
|
||||
"location_clusters": location_clusters # format: "lat,lon": count
|
||||
}
|
||||
Reference in New Issue
Block a user